Double Bayou WPP: Water Quality and Load Reduction Goals

Double Bayou Watershed Partnership Stakeholder Meeting August 18th, 2015 Stephanie Glenn, Ph.D., HARC

SAMPLING STATIONS

- Five Stations Two on each Fork, one at Anahuac **WWTF**
- Sampling results: October 22nd, 2013 –May 20th, 2015 (previous results 10/22/2013-8/12/2014)
- Sampling results include 30 to 31 routine events (sampling @ twice a month) and 7 targeted rain events at each station (189 total samples)

DISSOLVED OXYGEN

- Two Methods of Sampling
 - "Grab" sampling (includes routine and targeted rain event)
 - Only get one sample a day (typically 9 am -5 pm)
 - Shows greater range over a longer time period
 - 24-hour sampling
 - For a period of 24 hours (or more), takes one sample every 15 minutes
 - Captures the highest highs and lowest lows of the day really shows entire range of DO
 - Limited to that one day (less long-term range)
- If available, TCEQ uses 24-hour data for criteria assessment. If no/limited 24-hour data are available, TCEQ will use Grab samples with screening parameters for assessment.

DISSOLVED OXYGEN - GRAB SAMPLES

DISSOLVED OXYGEN - GRAB SAMPLES

DISSOLVED OXYGEN - GRAB SAMPLES

DISSOLVED OXYGEN - 24-HOUR SAMPLING

DISSOLVED OXYGEN

- 24-hour samples (East and West Forks Upper) suggest fluctuations throughout the day problematic for aquatic life
- Grab samples show samples for all stations (except WWTP) at concentrations below the screening level
- Percent Exceedances (% below screening level) for grab samples are greatest overall in samples collected in the Summer (June-Aug) and Fall (Sept-Nov)

BACTERIA

- Escherichia Coli (E. coli)
 - Rod shaped bacteria digestive tracks of warm blooded animals
 - Fresh water samples
- Enterococcus
 - Spherical shaped bacteria digestive tracks of warm blooded animals
 - Tidal water samples
- Indicate possibility of presence of disease-causing pathogens
- Sampling Units for Bacteria
 - SELECT Colony-forming units (CFUs)
 - Culture tests report results in Most Probable Number (MPN)/100 mL
- Targeted Rain Event sampling often shows "worst-case" scenario of bacteria levels; can identify sources of bacteria not seen during routine sampling weather conditions

Anahuac WWTF (Routine)

- West Fork Upper @ Sykes Rd (Targeted)
- --- Enterococci Benchmark (89 MPN/ 100 mL)

Variation in Bacteria Over the Sampling Period: West Fork Lower @ Eagle Ferry Rd

- West Fork Lower @ Eagle Ferry Rd (Routine)
- West Fork Lower @ Eagle Ferry Rd (Targeted)
- ─── Enterococci Benchmark (89 MPN/ 100 mL)

Targeted Sampling Rain

VARIATION IN BACTERIA BY SAMPLING STATION

- •Routine Sampling 10/22/13-5/20/15
- •Represents 17 total sampling events (# of samples = 17 per station)

VARIATION IN BACTERIA BY SAMPLING STATION

- Targeted RainEvent Sampling
- •Represents 7 total sampling events (# of samples = 7 per station)

BACTERIA

- Initial Sampling Results indicates:
 - Geomean Criteria (State) 3 of 5 stations (excluding WWTF and EFU) have high dry weather geomeans; all of those three exceed the criteria
 - Grab Samples
 - Routine
 - WFU, WFL, EFL high percent exceedance
 - Targeted
 - All high percent exceedance
 - Targeted Rain Event showed higher numbers, also showed importance of not just precipitation event but also days since last rain event
 - Variation in bacteria Fall (Sept-Nov) had the greatest percent of exceedances in routine sampling

- Aid in determining pollutant loadings under different flow conditions
- Traditionally, LDCs are developed for non-tidal stations due to the way the flow is represented and visualized in the LDC.
- East Fork Upper is only station in our watershed that is not classified by TCEQ as tidal
- No continuous stream flow gages on East Fork; however, stream flow data samples were measured each time a bacteria grab samples was collected
- Following discussion will focus on LDC development for East Fork Upper sampling station and load reduction goals associated with the upper watershed
- Future discussion will focus on lower part of the watershed, tidal mixing, and associated load reduction goals

- Development of a LDC
 - 1st step: Flow Duration Curve
 - Flow data are sorted and ranked from highest flow to lowest flow and then used to develop a graph of flow volume versus frequency

- Incorporate the concentration of the water quality standard for the pollutant in question (in Double Bayou's case, bacteria) to produce the Load Duration Curve (LDC).
- The "load" is expressed as amount of pollutant per unit time – i.e., bacteria in cfu/day.
- Resulting curve reflects the maximum load a stream can carry across the regime of flow conditions (low flow, medium flow, high flow) without exceeding the water quality standard.
- Different flow regimes are identified in the LDC as areas where the slope of the curve changes significantly – indicating a significant change in flow.

Different flow regimes are identified in the LDC as areas where the slope of the curve changes significantly – indicating a significant change in flow.

- Monitored data is then plotted on the curve to show the frequency and scale of exceedances
- o In the example:
 - Red squares: data collected in high flow conditions
 - Blue triangles: data collected in mid-range flow conditions
 - Green circles: data collected in low flow conditions
- When the monitored data points are above the red line indicating maximum regulatory load, the actual (measured) stream load has exceeded the water quality standard.
- Monitored data points on or below the red line indicate the actual (measured) stream load is in compliance with the water quality standard.

- Flow regime pollutant concentrations can be useful for evaluating potential point or nonpoint sources
- Primarily high flows exceedances → nonpoint sources
 - High flows usually linked to higher rainfall events; surface runoff which can carry pollutants to the stream
- Primarily low flows exceedances → point sources
 - Low flows usually linked to no runoff entering the stream and primarily direct discharges contributing

- Regression analysis is conducted using the monitored samples to calculate a "line of best fit" (it will be shown as a blue line).
- Blue line on or below the red TMDL line → monitoring data at that flow condition are in compliance with the water quality standard
- Blue line above the red TMDL line → monitoring data at that flow condition are not in compliance with the water quality standard
- Load Reduction Goals
 - Regression analysis → estimated percent reduction needed to achieve pollutant loads

Blue line **above** the red TMDL line → monitoring data at that flow condition are not in compliance with the water quality standard

LDC - ESTIMATE OF POLLUTANT LOADS

Regression analysis → estimated percent reduction needed to achieve pollutant loads

LOAD DURATION CURVES — MARGIN OF SAFETY (MOS)

- A margin of safety (MOS) can be applied to the pollutant concentrations to account for variations in loading from potential sources, stream flow, management measures, etc.
 - Gives you more of a buffer for error if things go wrong
 - Gives the plan the capacity to plan for bigger loads
- Input on MOS:
 - TCEQ regulatory standard for E. coli 126 cfu/100 mL
 - Options for more conservative thresholds for reduction goals
 - 5% MOS 120 cfu/100 mL
 - 10% MOS 113 cfu/100 mL

LDC - 5% MOS ESTIMATE OF POLLUTANT LOADS

LDC - 10% MOS ESTIMATE OF POLLUTANT LOADS

LOAD REDUCTION GOAL

- Plan generally for "mid-range" flow conditions
- MOS can be applied to the pollutant concentrations to account for variations in loading from potential sources, stream flow, management measures, etc.
- Input on MOS:
- No MOS 126 cfu/100mL
 - Mid-range flow conditions 30% reduction goal
- 5% MOS 120 cfu/100 mL
 - Mid-range flow conditions 34% reduction goal
- 10% MOS 113 cfu/100 mL
 - Mid-range flow conditions 38% reduction goal

NEXT STEPS

- Work Recommended Percent Load Reduction into WPP
- Discussion on Tidal Mixing and load reduction for lower portion of watershed

QUESTIONS

BACKUP SLIDES

AQUATIC CYCLE: DISSOLVED OXYGEN

AND NUTRIENTS

 Nutrient Inputs (nitrogen and phosphorus)

- Bacteria and plants (i.e. phytoplankton) consume the nutrients
- Chlorophyll-a can be an indicator of how much photosynthesis is going on in a system
- Excess nutrients can increase both bacteria growth and plant growth (which leads to increased chlorophyll-a and decreased DO)

DISSOLVED OXYGEN

- Designated Use: Aquatic Life
- Low Dissolved Oxygen levels can indicate an excessive demand on the oxygen in the system.

- < 0.5 mg/L Anoxic Oxygen dependent animals die
- < 3 mg/L Hypoxic Most aquatic organisms cannot survive 4-5 mg/L Aquatic organisms become stressed
- > 6 mg/L Optimal for many aquatic organisms

DISSOLVED OXYGEN

Time dependent

 Plants don't produce oxygen during the night - but oxygen is still being used then for respiration, so dissolved oxygen (DO) concentrations will be the lowest in a water body in the morning.

Temperature dependent

 The colder the water, the greater capacity it has to hold oxygen.

DISSOLVED OXYGEN

Salinity dependent

- As salinity in water increases, its ability to hold DO decreases.
- But DO decreases more as temperature goes up regardless of salinity.

Event dependent

- DO can go up right after a rainfall because fresh rain water, which is high in DO, is flushed into the system.
- After a lag period, the DO may go down because of increased bacteria in the runoff leading to increased decomposition.

DISSOLVED OXYGEN - GRAB SAMPLES

DISSOLVED OXYGEN - GRAB SAMPLES

Seasonal Table (does not include WWTP)

Highest % below Screening Levels in Summer

Dissolved Oxygen	Number of Routine Samples	Routine Samples Below Benchmark	Percent Below Benchmark (Routine)	Number of Targeted Rain Event Samples	Targeted Rain Event Samples Below Benchmark	Percent Below Benchmark (Targeted)
Fall Total (Sept Nov.)	32	6	19%	8	3	38%
Winter Total (Dec Feb.)	44	0	0%	4	0	0%
Spring Total (Mar May)	24	4	17%	16	0	0%
Summer Total (June - Aug.)	24	5	21%	0	0	0%

Variation in Bacteria over Season – Samples from 10/22/13 – 5/20/15

l										
Fall (September- November)					Winter (December - February)					
Station	# of Routine Samples	Routine Samples Exceedance	# of Targeted Samples	Targeted Samples Exceedance	Station	# of Routine Samples	Routine Samples Exceedance	# of Targeted Samples	Targeted Samples Exceedance	
WWTP (ENT)	8	1	2	1	WWTP (ENT)	10	0	1	1	
WWTP (E. coli)	8	0	2	1	WWTP (E. coli)	10	1	1	1	
EFU (E. coli)	7	1	2	1	EFU (E. coli)	11	1	1	1	
EFL (ENT)	8	7	2	1	EFL (ENT)	11	2	1	1	
WFU (ENT)	8	7	2	2	WFU (ENT)	11	6	1	1	
WFL (ENT)	8	8	2	2	WFL (ENT)	11	5	1	1	
Total	47	24	12	8	Total	64	15	6	6	
Percent Above			67%		Percent Above Benchmark	23%		100%		
Denemiark					Deficilitation					
- Delicinité/R		Spring (March	- May)		Benefillark		Summer (June -	August)		
Station	# of Routine Samples	Spring (March - Routine Samples Exceedance	- May) # of Targeted Samples	Targeted Samples Exceedance	Station	# of Routine	Summer (June - , Routine Samples Exceedance	August) # of Targeted Samples	Targeted Samples Exceedance	
		Routine Samples	# of Targeted				Routine Samples	# of Targeted		
Station	Samples	Routine Samples Exceedance	# of Targeted Samples	Exceedance	Station	Samples	Routine Samples	# of Targeted Samples	Exceedance	
Station WWTP (ENT)	Samples 7	Routine Samples Exceedance	# of Targeted Samples	Exceedance 3	Station WWTP (ENT)	Samples 6	Routine Samples	# of Targeted Samples	Exceedance O	
Station WWTP (ENT) WWTP (E. coli)	Samples 7 7	Routine Samples Exceedance 2	# of Targeted Samples 4 4	Exceedance 3 2	Station WWTP (ENT) WWTP (E. coli)	Samples 6	Routine Samples	# of Targeted Samples O	Exceedance O O	
Station WWTP (ENT) WWTP (E. coli) EFU (E. coli)	Samples 7 7 6	Routine Samples Exceedance 2 2 0	# of Targeted Samples 4 4 4	3 2 4	Station WWTP (ENT) WWTP (E. coli) EFU (E. coli)	Samples 6 6	Routine Samples Exceedance 1 1 1	# of Targeted Samples O O O	Exceedance 0 0 0	
Station WWTP (ENT) WWTP (E. coli) EFU (E. coli) EFL (ENT)	7 7 6 6	Routine Samples Exceedance 2 0 0	# of Targeted Samples 4 4 4 4	3 2 4 4	Station WWTP (ENT) WWTP (E. coli) EFU (E. coli) EFL (ENT)	6 6 6	Routine Samples Exceedance 1 1 1 2	# of Targeted Samples O O O	Exceedance O O O	
Station WWTP (ENT) WWTP (E. coli) EFU (E. coli) EFL (ENT) WFU (ENT)	7 7 6 6 7	Routine Samples Exceedance 2 2 0 0 4	# of Targeted Samples 4 4 4 4 4 4	2 4 4 4	Station WWTP (ENT) WWTP (E. coli) EFU (E. coli) EFL (ENT) WFU (ENT)	6 6 6 6	Routine Samples Exceedance 1 1 2 6	# of Targeted Samples O O O O	0 0 0 0 0	

East Fork Upper: *E.coli* Benchmark (394 MPN /100 mL)
Anahuac WWTP, West Fork Stations and East Fork Lower: Enterococci Benchmark (89 MPN/100 mL)

CHLOROPHYLL-A & NUTRIENTS

- Indicator of phytoplankton abundance and biomass in coastal and estuarine waters
- Chlorophyll-a is a green pigment found in plants that absorbs sunlight and converts it to sugar during photosynthesis using nutrients such as phosphorus and nitrogen
- High levels often indicate poor water quality and low levels often suggest good conditions BUT it is the overall cycle that is important
 - Temporal and spatial variation
 - Long-term persistence of elevated levels that can be problematic
- Grab samples (results include both routine and targeted rain event)

CHLOROPHYLL-A AND NUTRIENTS: AMMONIA

CHLOROPHYLL-A AND NUTRIENTS: AMMONIA

CHLOROPHYLL-A AND NUTRIENTS: NITRATE

CHLOROPHYLL-A AND NUTRIENTS: NITRATE

CHLOROPHYLL-A AND NUTRIENTS: PHOSPHORUS

CHLOROPHYLL-A AND NUTRIENTS: PHOSPHORUS

CHLOROPHYLL-A AND NUTRIENTS: CHLOROPHYLL-A

CHLOROPHYLL-A AND NUTRIENTS: CHLOROPHYLL-A

CHLOROPHYLL-A **AND NUTRIENTS**

- Routine and **Targeted Sampling**
- Represents 37-38 total sampling events (# of samples **= 37-38 per station)**
- Height of column reflects percentage of samples above benchmark

CHLOROPHYLL- A AND NUTRIENTS

By Station

- Overall exceedances low by station except
 - Ammonia at all stations with large Days Since Last Rain Event
 - Nitrate at West Fork Upper
 - Chlorophyll a at West Fork Lower
 - Phosphorus, Nitrate and Ammonia at WWTP

For BMP Consideration

 Sources of nitrates include wastewater treatment plants, runoff from fertilized lawns and cropland, failing on-site septic systems, runoff from animal manure storage areas

